Active Graphene Plasmonics with a Drift-Current Bias
نویسندگان
چکیده
We theoretically demonstrate that a system formed by drift-current biased graphene sheet on silicon carbide substrate enables loss compensation and plasmon amplification. The active response of the is rooted in optical pumping plasmons with gain provided streaming current carriers. proposed behaves as an amplifier for copropagating drifting electrons strong attenuator counter-propagating plasmons. Furthermore, we show feedback obtained connecting input output system, example, ring-shaped graphene–silicon nanoresonator, combined electrons, may lead to spasing.
منابع مشابه
Tunneling Plasmonics in Bilayer Graphene.
We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latte...
متن کاملTowards Infrared Plasmonics in Graphene
Graphene plasmons have recently been proposed as an alternative to noble-metal plasmons in the field of photonics, due to its extremely tight light confinement, relatively long-lived collective oscillation, and high tunability via electrostatic gating. Successful support and tuning of graphene plasmonic modes rely on controllable doping of graphene to high carrier densities in nanometer-scale s...
متن کاملNoise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode
In this paper, the noise equivalent power (NEP) of an optical sensor based ongraphene-superconductor junctions in the constant current mode of operation has beencalculated. Furthermore, the necessary investigations to optimize the device noise withrespect to various parameters such as the operating temperature, magnetic field, deviceresistance, voltage and current bias have been presented. By s...
متن کاملUltrafast active plasmonics
Surface plasmon polaritons, propagating bound oscillations of electrons and light at a metal surface, have great potential as information carriers for next-generation, highly integrated nanophotonic devices1,2. Since the term ‘active plasmonics’ was coined in 20043, a number of techniques for controlling the propagation of guided surface plasmon polariton signals have been demonstrated4–7. Howe...
متن کاملActive quantum plasmonics.
The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Photonics
سال: 2021
ISSN: ['2330-4022']
DOI: https://doi.org/10.1021/acsphotonics.0c01890